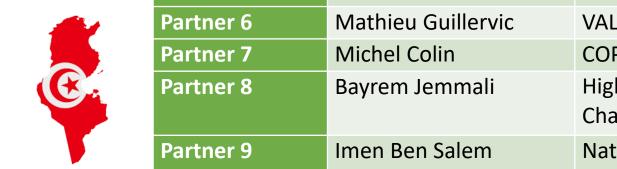


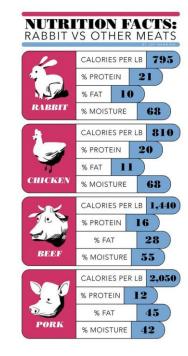
ΩRabbit: Food for health benefit

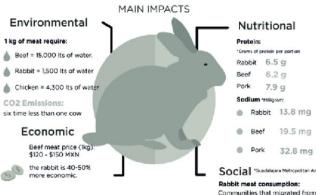
Prof. Gabriele Brecchia – Coordinatore progetto

Dipartimento Medicina Veterinaria e Scienze Animali – Università di Milano gabriele.brecchia@unimi.it



Partners del progetto





1. Sviluppare un <u>nuovo alimento di alta qualità</u> – "Ωrabbit meat"

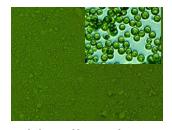
- 1.1 Effetti dell'integrazione della dieta con prodotti derivati del lino e/o alghe "Padina pavonica" e "Chlorella vulgaris" sulla qualità della carne a livello nutrizionale, chimico-fisico, organolettico e sensoriale
- 1.2 Aumentare l'inclusione di **n-3** nella carne, producendo un nuovo **alimento funzionale "Ωrabbit meat"**
- 1.3 Favorire la **salute umana** riducendo l'incidenza di patologie croniche e la riduzione della fertilità legate ad uno sbilanciato rapporto n-6/n-3 nella dieta (**prova clinica**)
- 1.4 Aumentare il consumo di carne di coniglio

BENEFITS OF RABBIT MEAT

the countryside to the city, most of them ate rabbits in their infancy

- 2. Ottimizzare la produzione della carne di coniglio e il consumo dell' Ω rabbit meat sia nei mercati locali che esteri
 - 2.1 Produrre mangimi specifici basati sulla integrazione di lino e alghe

Lino intera pianta


Paglia di lino

Crusca di lino

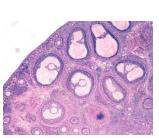
Semi di lino estrusi

Chlorella vulgaris

Padina pavonica

Mangime per riproduttori

Mangime da ingrasso



2.2 - Aumentare le prestazioni riproduttive e produttive del coniglio in modo da rafforzare la sostenibilità del business, per i piccoli allevatori e le attività satellite

Fertilità dei riproduttori

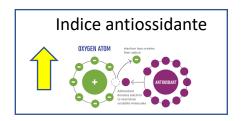
> Recettività

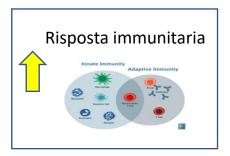
> Prolificità < Mortalità

Lattazione

Resa macellazione Qualità carcassa

Peso allo svezzamento e macellazione Conversione alimento



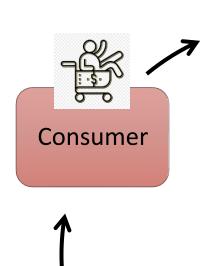


2.3 - Valutare l'impatto dell'integrazione sulla **salute animale** (<u>microbiota</u> benefico che stimola il sistema immunitario e la resistenza alle malattie) e antibiotico resistenza e residui

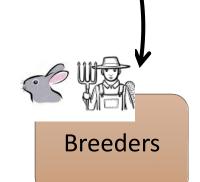
2.4 - Validare un innovativo metodo di confezionamento con l'uso di un PAD assorbente "<u>bacterial catcher</u>" adattato alla carne di coniglio durante il confezionamento in atmosfera modificata dell'Ωrabbit meat (shelf-life e commercializzazione), mantenuta a temperatura di refrigerazione e congelata

Coniglio intero refrigerato

Coniglio intero congelato


Coniglio congelato porzionato

- 3. Creazione di una nuova filiera alimentare che aumenti la competitività dei diversi attori
 - 3.1 Coinvolgere attori chiave per sviluppare una filiera alimentare innovativa che garantisca il principio «from farm to fork» e l'acquisizione di nuovi mercati



3.2 - Rafforzare la cooperazione tra gli attori della filiera produttiva e centri di ricerca (approccio multi-attore) attraverso la costituzione del Consorzio ΩRABBIT che favorirà la redditività dei partecipanti

- 1) Produzione di **diete specifiche** per favorire la fissazione degli n-3 nei tessuti degli animali specifici per i riproduttori maschie e femmine e per i conigli da ingrasso
- 2) Aspetti produttivi e riproduttivi femmine:
- Riduzione nella mortalità pre e post-svezzamento
- Trend per recettività e fertilità
- Peso, consumi, produzione di latte, numerosità e peso delle nidiate non differenti
- 3) Aspetti riproduttivi maschio: differenze nella concentrazione, percentuale di spermatozoi mobili e alcuni parametri cinetici

4) Nei conigli all'ingrasso:

- Il gruppo L5% mostra il **peso medio** e un **accrescimento giornaliero** più alto rispetto agli altri gruppi mentre ha il **feed conversion rate** più basso
- non ci sono differenze nel consumo di cibo

5) Devono essere svolte le **analisi del microbiota** e per lo **stato ossidativo e immunitario** che si traducono in una maggiore resistenza alle malattie

- Composizione in acidi grassi

Le diete contenenti semi di lino estrusi hanno un'alta percentuale di acidi grassi n-3, rispetto alla dieta di controllo

Experimental diets ¹								
	CNT	L5%	L3.5%PP	RMSE ²	Probability			
∑SFA	35.87a	34.72b	35.10b	0.87	0.0004			
BRANCH	0.23a	0.20b	0.20b	0.02	0.0001			
∑MUFA	23.93	24.00	23.76	1.23	0.797			
MUFAtrans	0.22	0.22	0.23	0.04	0.859			
∑n6	35.34 a	30.16c	31.06b	1.43	0.0001			
n6cis	35.15a	29.96c	30.86b	1.44	0.0001			
n6trans	0.19	0.20	0.20	0.031	0.534			
CLA	0.27b	0.31a	0.31a	0.052	0.039			
n3cis	3.92 c	10.08a	9.01b	1.09	0.0001			
HLCFAn6	7.27 a	5.91b	6. 73 a	1.23	0.0004			
HLCFAn3	1.58 b	3.39 a	3.58 a	0.55	0.0001			
∑PUFA	39.54 b	40.55 a	40.35 a	1.24	0.028			

- Composizione in acidi grassi
- L'acido α-linolenico è (C18:3n3) convertito in EPA (acido eicosapentenoico, 20:5n-3), DPA (acido docosapentaenoico 22:5-n-3) e DHA (acido docosaesaenoico, 22:6-n-3) che proteggono da infiammazione e malattie cardiovascolari e migliorano la vista e le funzioni cognitive
- Come indice di qualità è stato indicato anche il rapporto n6/n3 degli acidi grassi PUFA
- Il rapporto ottimale degli acidi grassi n6/n3 è stato indicato come 4 ed entrambi i gruppi che hanno ricevuto semi di lino estrusi (L5% e L3,5%PP) rientravano in questa soglia

Experimental diets ¹								
	CNT	L5%	L3.5%P P	RMSE ²	Probability			
C18:2n6	27.8 a	24.0b	24.1b	1.30	0.0001			
C18:3n3	2.35c	6.69a	5.39b	1.21	0.0001			
C20:4n6	6.32a	5.1b	5.94a	1.15	0.009			
C20:5n3 EPA	0.18 b	0.54a	0.58 a	0.095	0.0001			
C22:5n3 DPA	1.14b	2.37a	2.57a	0.39	0.0001			
C22:6n3 DHA	0.24b	0.44a	0.49 a	0.10	0.0001			
n6/n3	9.61a	3.02 b	2.42 b	1.21	0.0001			

Valutazione a 0,7,14 e 21 giorni su carne fresca refrigerata

- pH NO differenza
- Perdita di acqua (L5% minore perdita di acqua di sgocciolamento)
- Colore (L5% e L5%PP più luminosi e chiari)
- Ossidazione proteica (determinazione tioli e carbonili) NO differenza
- Ossidazione lipidi (Tbars) maggiore ossidazione per L5% e L5%PP

Valutazione a 0, 7, 14 e 21 giorni su carne fresca refrigerate con PAD

- Il PAD attivo utilizzato in questo studio ha protetto efficacemente la carne da un'eccessiva perdita di liquidi
- Il PAD sembra aver fornito una maggiore protezione contro l'ossidazione dei lipidi nella carne

	СР	AP	RMSE	
Drip loss	3.00	2.89	0.25	**
Lightness	62.14	61.64	2.17	ns
TBARS	1.06	0.89	0.15	**
Thiol	50.70	51.26	2.89	ns
Carbonil	2.17	2.19	0.37	ns

Analisi microbiologiche carica microbica totale (TVC), Staphylococcus spp., E. coli, Enterobacteriaceae, Pseudomonas spp. e Brochothrix thermosphacta

- Durante il periodo di conservazione, tutti i parametri microbiologici indagati sono **aumentati significativamente nel tempo**, anche se in nessun caso l'aumento è stato registrato prima dei 14 giorni di conservazione
- Al termine del periodo di osservazione non è stata rilevata alcuna differenza tra i gruppi
- Da questi risultati preliminari risulta che il confezionamento con PAD attivo abbia esercitato un'azione antimicrobica una leggera, sebbene con una certa variabilità

- La società consortile è una società tra più imprese che ha lo scopo di delineare un'organizzazione comune (opera come una società per perseguire gli scopi dei consorziati)
- Lo scopo non è quello di realizzare un utile da dividere tra i consorziati, ma quello di consentire a questi ultimi il conseguimento di un vantaggio mutualistico
- Per costituire una società cooperativa consortile è necessario che i soci siano almeno nove

- La quota sociale verrà stabilità tra 25 euro fino ad un massimo di 500 euro a quota per una partecipazione massima di 100.000 euro
- La quota è restituita al socio nel momento in cui lo stesso dovesse uscire dalla società
- Ciascun socio cooperatore ha un voto, qualunque sia il valore della quota o il numero delle azioni possedute
- Per le obbligazioni sociali risponde sempre l'impresa con il suo patrimonio. E', quindi, prevista la responsabilità limitata dei soci al capitale conferito

- Organi della società consortile cooperativa:
 - Assemblea dei soci
 - Consiglio di amministrazione
 - Presidente
 - Organo di controllo: Collegio Sindacale Revisore Legale (Art.2477 C.C.)

- Altri Organi (facoltativi) della società consortile:
- Collegio Probiviri: ha il compito di vigilare e giudicare i soggetti che hanno trasgredito le regole di condotta proprie della società e dirime i conflitti interni tra soci e socisocietà
- Comitato Scientifico: è un organo tecnico-consultivo che supporta il CdA nella definizione delle linee strategiche, nella proposta e nella valutazione dei progetti di ricerca. È composto da personalità che sono impegnate o comunque di riconosciuto prestigio nei campi attinenti agli scopi della società
- Comitato Etico: è organismo consultivo indipendente che ha la responsabilità di garantire la tutela dei diritti, della sicurezza e del benessere delle persone

Il CdA attua i dettami del regolamento interno

Elementi caratterizzanti la società consortile cooperativa OMEGA RABBIT:

- Tutela dei soci fondatori e del marchio
- Predisposizione del disciplinare, attuazione e controllo del rispetto delle regole
- Individuazione e determinazione della filiera
- Applicazione di procedure di sostenibilità
- Pianificazione Business Model e strategia d'impresa
- Ruoli interni ed esterni
- Ripartizione attività

- Determinazione della copertura delle spese di gestione e degli investimenti
- Commissioni di performance utilizzo e ripartizione

